FUN3D v12.4 Training

Session 12:
Suggar++ Basics

Session Scope

* What this will cover
— Very rudimentary SUGGAR++ operation
« What will not be covered
— All the useful stuff that Ralph Noack would teach you

— GVIZ (Ralph’s own viewer for overset grid assembly - useful for
debugging/assessing hole cutting)

« What should you already be familiar with
— Basic concept of overset meshes

@l http://fun3d.larc.nasa.gov @ I\f!ggmmumm;

Introduction

« Background
— Use of overset grids in FUN3D requires SUGGAR++

 Disclaimer: | am not a SUGGAR++ expert - just a user for limited
applications; this presentation may contain factual errors or other
misinformation

« Compatibility

— FUNRS3D requires both DiRTIlib and SUGGAR++ codes from Celeritas
http://www.celeritassimtech.com

— Grid formats: VGRID, AFLR3, FieldView (FV)
 Status

— QOverset simulations done with FUN3D and SUGGAR++ on a
frequent basis, primarily for rotorcraft applications.

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

SUGGAR++ Documentation

» User’s Guide: doc/UsersGuide/UsersGuide.pdf
— Documents list of input elements (the rules, not much of the “why”)
— Documents command-line options for SUGGAR++

* Programmer’s Guide: doc/ProgrammersGuide/ProgrammersGuide.pdf
— Compilation
— How to integrate lIbSUGGAR++ into a flow solver

» Ralph Noack and Dave Boger provided training at the April 2010
FUN3D Training Session

— Much of the material here is a distillation of the April 2010 slides - but
they had a full day to cover this

@l http://fun3d.larc.nasa.gov @ I\f!ggmmumm;

Nomenclature (1/4)

« SUGGAR++: Structured, Unstructured, Generalized overset Grid
AssembleR

— PEGASUS-like capability for general grids
— Stand-alone version plus library version to call within a flow solver

* DiRTlib: Donor interpolation/Receptor Transaction library - used by flow
solver to handle data provided by SUGGAR++; no user input (just compile
and link to flow solver)

* Component Grid
— “Independently” generated grid for one piece of the configuration
— Up to you to create these
« Composite Grid
— An assembly of component grids
— Created by SUGGAR++ based on your input

@l http://fun3d.larc.nasa.gov @ I\f!ggmmumm;

Nomenclature (2/4)

» Overset grid point classification

— In or Active: flow solver updates these points by solving the governing
equations at these locations

— Qut or Hole: flow solver need not update these points as they have been
removed from the domain

* In practice, especially for moving grids, the flow solver fills in data at
these points by averaging neighboring points - done so that as points

move from “out” to “in”, they have “reasonable” data

— Fringe: these points are updated by interpolation from “in” points; fringe
points border a hole (inner fringe) or lie along an outer boundary (outer
fringe)

— Donor: the “in” points that supply data to fringe points

— Orphan: fringe points for which too few or no donor points can be found;
undesirable; solver fills in data at these points by averaging solution at
neighboring points

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Nomenclature (3/4)

» Flow solver point classification - example

Inner Fringe - Black Dots

\.ﬂ“;f”“f{ _
A
NGNS
P R % S ST = RN AN Y
e Ry S SN WA
A A R
}P_hr H\uﬂ}rﬂwﬁh s — “I.«.._l\ul_n
T B e
AT I iy iSilsia
AT R
AL L T
i S 0 A 5 (TR
[T« AT AR
A - T
HUTHVARL, - P AT
L A
LT -
EIiiga, Siss Il
R - - T
T - -
RO - LT
Bnsis A Sy
T, - AT
T N, wa \.f,w.. LJﬁQ&t
Rysass: AT
Ui N e %)
Jﬁz¢@ RIS)
SRSt e e O
L% VS aETea e
LS P s D
2, / !
o - o
a %
() =
=) L
M O
)
(O]
O O
T

@ree
Fully Unstructured Navier-Stokes

FUN3D Training Workshop
March 24-25, 2014

http://fun3d.larc.nasa.gov

&

Nomenclature (4/4)

* DCI file
— Domain Connectivity Information file

— Created by SUGGAR++; contains information about point classifications
(hole, fringe, etc) for points in composite mesh, plus interpolation stencil
data

— Calls to DiRTIib within FUN3D read the DCI file and utilize the data
within to update the solution at fringe points via interpolation from donor
points

— If grid is static, only need one DCl file

— If grid is dynamic, must either have pre-computed DCI files available for
the grid positions at each time step, or utilize libsuggar calls within
FUN3D to compute DCI data “on the fly” (separate presentation)

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

XML Basics (1/2)

« SUGGAR++ input is based on XML
— eXtensible Markup Language (HTML-like, but not web centric)

— XML element is enclosed in a tag “< >" , with corresponding end tag
<body> .. </body> (start and end can also span multiple lines)
— Elements can have attributes/data: <body name=“wing”>

— Elements can have an implicit end tag; elements can be empty - no
attributes: <dynamic/>

— XML elements can be embedded in other XML elements to create
parent-child relationships (wing and store are children of aircraft)
<body name=%“aircraft’”>
<body name=“wing”>
</body>
<body name=“store’”>
</body>

</body>

@l http://fun3d.larc.nasa.gov @ I\f!ggmmumm;

XML Basics (2/2)

» Element attributes are name/value pairs associated with an element

— Always in the start tag, value must be in quotes (single or double)
<body name=‘blade 1’'> .. </body>

<translate axis=“x"” wvalue=“1.0e0”/>

« Comments start with <!-- and end with --> and cannot be within a tag
<!-- <body name=“aircraft”/> --> Correct
<body <!-- name=“aircraft” --> /> Incorrect

« XML syntax must be precise: xmllint is on most(?) systems and can be
used to check XML syntax before using SUGGAR++

— Usage: xmllint myfile.xml

— If syntax is OK, will simply echo XML file to screen; otherwise it reports
the error

 Indentation helps keep XML input readable; xmllint can help here too
— Usage: xmllint -format my_messy_file.xml > my_neat_file.xml

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Hole-Cutting: Hierarchy

» Parent-Child hierarchy established in XML file minimizes additional input to
control hole cutting

« Basic rule: siblings cut each other

— Geometry in one body (including all children) cut all grids in a sibling
body (including all children); Aircraft cuts hole in Store and vice versa

-
oy
_ o e® o

o -

FUN3D Training Workshop
http://fun3d.larc.nasa.gov March 24-25, 2014 I\z,gu?mmmm,m, 1

Hole-Cutting: SUGGAR vs SUGGAR++

* Older SUGGAR code relied (primarily) on Octree hole cutting - uses
Cartesian representation of geometry; hole cutting based on a query
approach: Is this point inside (the Cartesian representation of) the body?

* In my experience, the Octree hole cutting approach often needs a lot of
tweaking beyond the default behavior

* Newer SUGGAR++ code relies (primarily) on a direct hole cutting approach:
Find intersections of geometry and grid; requires watertight geometry

* In my experience very little tweaking has been required with SUGGAR++

« SUGGAR++ supports the older Octree approach too; other hole-cutting
options are available but are beyond the scope here

* There are pros and cons to any approach...

FUN3D Training Workshop
http://fun3d.larc.nasa.gov March 24-25, 2014 %?Emmm,m; 12

Hole Cutting: Overlap Minimization

 Solution quality usually improved by reducing amount of overlap

» Goal is to have donors and receptors of similar size

« Enabled by element <minimize overlap>

* For moving grids: <minimize overlap keep inner fringe=“yes”/>

— Instead of blanking out points removed in overlap minimization, keeps
them as fringes so they are interpolated rather than averaged -
presumably better for when these points later emerge from the hole

e e el fantitiea e
e i B 0 g S o AR i
g e L g 0 A 0 e i i g -
0, 0 00 S A Y 1 B M M 0,0 % e 5SS w0
o T T g A R i 81 b5 N S e
HiTEE e A el T N i N 2 o
s 52 e e e o T AT TR e, ' : el A A
'+__H- [" . rl ’QL “*’h‘f " \§ ‘,\E’CQ\’.‘\ y '+_ llllllll \TI:IIE;?\' i ey
S S NS 5315 ST B e LI Pt
IR LA , I o S A A [Nty Ny \}x‘_{,: ot AN
Ao A , .. Ao L h ! ol oS AN
e A i ’ R PR = J TS f‘m‘?
i i e 0 s W iy f v X1 [LA S s AT
g A i Vi O A ISP/ 7 F 7 - SN
B L A e 00 G 81 e 0 i, e . A i A 0 i A T s S
L o, ih i e i A L G S, [G2
I R 2P S S A R R W A s
& H o] ¥4 & | 1]

FUN3D Training Workshop
http://fun3d.larc.nasa.gov March 24-25, 2014 %?Emmhk,m; 13

Building Up A SUGGAR++ Input File (1/9)

* <global> element serves as the root (parent) element for every
SUGGAR++ input file: first line in file is <global> and last line is
</global>

 Child elements of <global> specify various global parameters, and the
body hierarchy

« So on a high level an input file for an aircraft composed of a wing and a
store would look something like:
<global>
<!-- global parameters here -->
<body name=“aircraft”>

<body name="“wing”>

<!-- wing parameters here -->
</body>
<body name="“store’”>
<!-- store parameters here -->
</body>
</body>

</global>

@l http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Building Up A SUGGAR++ Input File (2/9)

« Common child elements of <global> (see documentation for more info)

— <donor quality value="0.9”/> (lower stencil quality standard to
reduce number of orphans)

— <minimize overlap keep inner fringe=“yes”/>
— <output> (governs output of composite mesh and DCl file)
— Principal children of <output>
* <composite grid filename=“file” style=“style”/>
* <domain connectivity filename=“file” style=“style”/>
— <composite grid/> style attributes compatible with FUN3D:
* “unsorted vgrid set”, “fwvuns”, “aflr3”, “ugrid”

* Note: “vgrid set” is not valid output option for node-centered
grids (FUN3D is node centered)

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Building Up A SUGGAR++ Input File (3/9)

* <body> element can be child of <global> or another <body>
— Required attribute is name=“body name”
« Common child elements of <body> (see documentation for more info)

— <volume grid name="wing” filename=“Grids/wing”
style=“vgrid set”/> (associates a volume grid with a body)

— <dynamic> (declares a body as moving; also determines how the
element <transform> is handled)

— <transform> (to manipulate body: scale, rotate, translate, etc.)

 If <transform> is child of <body>, transform is “static” - input
grid coordinates are actually altered by the transform specified

— Use to move component grids into place for composite mesh

* If <transform> is child of <dynamic>, transform is “dynamic” -
input grid coordinates are not altered by the transform; the transform
is only used internally to compute overset data

— Use to specify grid motion from static position

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Building Up A SUGGAR++ Input File (4/9)

» Subtle (important) effect of <dynamic> tag:
— Flags the associated grid as dynamic in the DCI file
— FUNS3D will need this info up front for dynamic grid simulations
* When setting up input file to generate composite mesh / initial DCI file:
— Add a “self-terminating” <dynamic/> child to any body that will
subsequently be in motion:
<body name='"store">
<dynamic/>
<transform>
<translate axis="x" value=" 7.6520E-01"/>
</transform>
</body>
— Because the <dynamic/> element self terminates, <transform>

is not a child of it, and the usual static transform is applied to position
component “store” in the composite mesh

@l http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Building Up A SUGGAR++ Input File (5/9)

« Children of <transform>:
— <translate>
— <rotate> (used to rotate about x, y, or z)
— <rotate about v> (used to rotate about arbitrary vector axis)
— <scale>
<body name="store'">
<dynamic/>
<transform>

<translate axis="x" value=" 7.6520E-01"/>
</transform>
</body>

— The order of transforms is important; transforms applied in order
specified in the input file

» Refer to documentation for complete rules about which elements are
allowed as children, which are allowed as parent, allowable attributes, etc.

@l http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Building Up A SUGGAR++ Input File (6/9)

* More complex example of <transform> from rotorcraft application
<body name="rotorl blade2">

<dynamic/>
<transform>
<translate axis="x" value=" 7.6520E-01"/>
<translate axis="y" value=" 0.0000E+00"/>
<translate axis="z" value=" 7.9600E-01"/>

<rotate_about v axis vector="0.0E+00, 1.0E+00, 0.0E+00" wvalue="0.0E+00”
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>

<rotate_about v axis_ vector="1.0E+00, 0.0E+00, 0.0E+00" value="0.0E+00"
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>

<rotate about v axis vector="0.0E+00, O0.0E+00, 1.0E+00" wvalue="0.0E+00"
originx="77h52E—61" ori&lny="0.0E+00" originz ="7.96E-01"/>

<rotate_about v axis_vector="0.0E+00, -1.0E+00, 0.0E+00" value="0.0E+00"
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>

<rotate_about v axis vector="0.0E+00, O0.0E+00, 1.0E+00" value="9.0E+01"
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>
</transform>

<volume grid name="rotor w_cutout_ 1 correct pitch" style="vgrid set"
filename="rotor_w_cutout_l_correct_pitch" format="unformatted”

precision="double">
</volume grid>
</body>

@l http://fun3d.larc.nasa.gov @ I\f!ggmmumm;

Building Up A SUGGAR++ Input File (7/9)

« Boundary conditions

— SUGGAR++ needs to know some boundary condition information, e.g.
which are the solid (body) boundaries, which outer boundaries need to
be interpolated from other grids

« SUGGAR++ input has provision for specifying the required SUGGAR
++ BC’s via XML elements

* An alternative is to provide SUGGAR++ with a separate file with the
BC data

— | strongly recommend the first approach - set the BC’s via XML, since
the SUGGAR++ BC files are not required, and if you move things
around and forget the BC files, SUGGAR++ will run with defaults, likely
not what you want

* One exception: if VGRID grids are used exclusively, SUGGAR++ will
use BC’s from VGRID’s mapbc file, which FUN3D will also require,
so you will always have consistent BC's.

@l http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Building Up A SUGGAR++ Input File (8/9)

« SUGGAR++ needs BC info for each component grid

* <boundary condition> is a child of <boundary surface> which is
a child of <volume grid>

« Examples (syntax for each grid type a little different)

— AFLR grid
<boundary surface find="yes" name="Surf=2"> surface corresponds to
<boundary condition type="overset”/> 27d patch in grid file

</boundary surface>

— FV grid
<boundary surface find="yes" name="airfoil surface"> must be SAME name that

<boundary condition type="solid"/> is set in grid file

</boundary surface>

— VGRID grid (shown completeness — generally don’t need)

<boundary surface find="yes" name="Surf=3:bc=4"> need surface/patch no.
<boundary condition type="solid”/> AND bc type

</boundary surface>

) N3D
@/ http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Building Up A SUGGAR++ Input File (9/9)

* Principal options for <boundary condition type= >
- “overlap”
- “non-overlap”
- “solid”
- “non-solid”
- “symmetry”
- “farfield”
- “freestream”
- “periodic”
- “axis”
« 2D Cases
— Add as child of <global>

<symmetry plane axis="Y" both directions="yes"/>
<ignore direction dir="Y"/>

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Running SUGGAR++: Static / T=0 (1/3)

» Ralph recommends creating a “Grids” subdirectory and an “Input”
subdirectory for each case

— | never do this however

— By default SUGGAR will look to read Input/Input.xml, so if you don’t
have this you simply have to explicitly give the input file name

* You will want to redirect stdout and stderr (stdout has LOTS of output);
below, file name Input.xml 0 is explicitly given

— c-shell

(./suggar++ Input.xml 0 > suggar++.output) > & suggar++.error

— bourne-shell

./suggar++ Input.xml 0 1> suggar++.output 2> suggar++.error
— Simpler trick: . /suggar++ -reopen Input.xml 0

» stdout and stderr automatically go to out.stdout++ and
out.stderr++

@l http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Running SUGGAR++: Static / T=0 (2/3)

* Principal output: DCI and composite grid files specified in the XML file

* A concise summary of SUGGAR++ info is written to summary. log
start time: Wed Jul 7 18:49:17 2010
host: ilénl
last git commit:
command line: ./suggar++ Input.xml O
number of processors: 1
number of threads: 1
total number of out: 9657
total number of fringes: 166124
total number of min fringes: 145265
total number of orphans: 199
number of orphans due to poor quality donors: 199
wall clock to perform assembly (seconds): 4.98748
memory used (MB): 1018.83
max interpolation deviation: 7.32747e-15
fringe donor quality: 0.904761
min fringe donor quality: 1

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Running SUGGAR++: Static / T=0 (3/3)

« SUGGAR++ can use multiple threads
— Via command line —-n_threads N (for N threads)

Via input element <threads n=“"N"/>
Never found this particularly worthwhile (YMMV)

« SUGGAR++ can be run in parallel

So far scaling achieved has been fairly poor - nowhere near linear,
even for small (~8) processor counts

Requires a separate partitioning step, which is at odds with current
FUN3D parallel-processing paradigm; “optimum” SUGGAR++
partitioning bears no resemblance to optimal flow solver partitioning

For these reasons, there has been minimal incentive to utilize the
parallel capability for SUGGAR++ processing

Hopefully SUGGAR++ parallel scaling will improve in the future

http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

Running SUGGAR++ ;: Moving Grid (1/3)

* For FUN3D applications involving moving grids, SUGGAR++ must be
run at least one time, to create the composite mesh and initial (T=0)

DCI file

— FUNBS3D can call SUGGAR++ routines to compute the DCI data for
each time step after T=0, “on the fly”

« Works for the most general case involving deforming bodies/grids
or where motion is not known a priori (6DOF/aeroelastic)

* Creates a serial bottleneck in FUN3D execution, but is the easiest
option to use

* More details in “Overset-Grid Simulations” Session

* For rigid grids with prescribed motion can run SUGGAR++ with a
“motion file”

— Can be done “embarrassingly parallel” — simultaneous runs with
different motion files

— Potentially can use SUGGAR++ in parallel mode as well

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Running SUGGAR++ ;: Moving Grid (2/3)

* To run SUGGAR++ with a motion file called (e.g.) “motion.xml”:

— (./suggar++ Input.xml 0 -play motion motion.xml >
suggar++.output) > & suggar++.error

* Input.xml 0 is the same xml file used to create the composite
grid and static / T=0 DCl file

* Motion file:
— Each time step is contained in a complete <global> element
— Typical motion file will have multiple time steps

— Output specification of DCI file for the time step should be placed
before and <body> specifications

— Up to the user to make sure the specified motion is the same as that
which will later be applied by FUN3D during execution

— Should include one “motion” step with no motion if you want to
generate the static / T=0 dci file in the same execution of SUGGAR++

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

Running SUGGAR++ ;: Moving Grid (3/3)

« Simple example of motion file with 2 time steps: T= 0 and T=deltaT

<global>
<output>
<!--- This is to generate the T=0 dci file note: no number after [project] name --
<domain_connectivity style="ascii_ gen_drt pairs" filename="./wingstore.dci"/>
</output>
<body name="wingstore">
<body name="wing">
</body>
<body name="store">
<dynamic>
<transform>
<translate axis="z" value=" 0.000000000000E-00"/>
</transform>
</dynamic>
</body>
</body>
</global>

<global>
<output>
<!--- This is to generate the T=delta t dci file (timestepl) -->
<domain_connectivity style="ascii_gen:ﬁrt_pairs" filename="./wingstorel.dci"/>
</output>
<body name="wingstore">
<body name="wing">
</body>
<body name="store">
<dynamic>
<transform>
<translate axis="z" value=" -2.120800000000E-01"/>
</transform>
</dynamic>
</body>
</body>
</global>

@l http://fun3d.larc.nasa.gov @ I\gggmmumm;

GVIZ

» Ralph has a “home-brew” interactive visualizer for looking at the overset
grid assembly, called GVIZ

— Allows visualization of the meshes, hole points, fringe points, etc.
— Can be useful for debugging

— | don’t have enough skill with GVIZ to even begin to explain how to
use it

@l http://fun3d.larc.nasa.gov @ I\gggmmumm;

Troubleshooting

* Lots of orphans could mean:
— Improper BC’s

— Non watertight geometry (default direct hole cutting requires
watertight surfaces) — likely if virtually all points end up as hole

points

) N3D
@l http://fun3d.larc.nasa.gov @ Fully Uhs tuctared Navier-Stokes

List of Key Input/Output Files

* Input
— Input/Input.xml (default; any name OK if explicitly specified)
— Motion file (any name OK, used with -play motion)

— Component grids (name and grid format vary; for FUN3D: VGRID,
AFLR3, Fieldview formats)

* Output
— Composite grid; name and grid format vary
— filename.dci (filename set in XML file)
— summary.log concise summary by point type (out, fringe, orphan...)
— SUGGAR++ motion.log (if -play motion) echo of motion file

@l http://fun3d.larc.nasa.gov @ I\}!.?w?mmumm;

